INDIAN SCHOOL MUSCAT – MIDDLE SECTION – DEPARTMENT OF MATHEMATICS – TERM :01 (2018–19)

NAME OF THE STUDENT :

CLASS : 8 SEC : SUB: MATHEMATICS

Ser.

WORKSHEET NO: 04TOPIC: SQUARES AND SQUARE ROOTS & CUBES AND CUBE ROOTSDATE: 19.08.18

Q.NO:01

S.NO			MCO				ANSWER
5.10			MCQ				ANSWER
(a)	The least number to be multiplied by 5x 3x3x3x2x2x2x2x2 to make it a square number is						_
	a)15	b) 6	c)30			d)45	
(b)	There are non-perfect square numbers between 23 ² and 24 ²						
	a)42	b)44	c)46			d)48	
(c)	The square number in the following numbers is						
	a)576000	b) 44100	c)1240000			d)6250	
(d)	The digit in one	s place in the cube root of 21	97 is a)7	b)3	c)9	d)1	
(e)	The smallest number by which 686 must be divided to get a perfect cube is						
	a)3	b)2	c)5			d)7	

S.NO	FILL IN THE BLANKS	
(f)	The square root of 0.000144 is	
(g)	The perimeter of a square field having area 32400 m ² is	
(h)	In the Pythagorean triplet (35, ,) the missing numbers are and	
(i)	The value of $\sqrt[3]{\frac{1728}{1331}}$ is	
(j)	The value of $\sqrt{105 + \sqrt{256}}$ is	

S.NO					
3.110	ANSWER THE FOLLOWING QUESTIONS				
2	Find the cube root of 5832 by prime factorization method.				
3	Find the least number that must be subtracted from 9561 to make it a perfect square number.				
4	Check whether the number 3072 is a perfect cube or not				
5	Find the least number that must be added to 9577 to make it a perfect square number.				
6	Find the cube of $\sqrt{\frac{256}{324}}$				
7	Evaluate $\sqrt{45 \times 20}$ + $\sqrt{8 \times 128}$				
8	Evaluate $\sqrt[3]{0.000001} \times \sqrt{10000}$				
9	Express 31 ² as a sum of two consecutive natural numbers				
10	A society collected ₹ 8836 , each member contributing as many rupees as there were members .Find the number of members in the society.				
11	Find the smallest square number which can be divided by 6, 12 and 15				
12	Find the value of $\sqrt[3]{432} \times \sqrt[3]{4}$				